Benchmarking Inverse Statistical Approaches for Protein Structure and Design with Exactly Solvable Models

نویسندگان

  • Hugo Jacquin
  • Amy Gilson
  • Eugene I. Shakhnovich
  • Simona Cocco
  • Rémi Monasson
چکیده

Inverse statistical approaches to determine protein structure and function from Multiple Sequence Alignments (MSA) are emerging as powerful tools in computational biology. However the underlying assumptions of the relationship between the inferred effective Potts Hamiltonian and real protein structure and energetics remain untested so far. Here we use lattice protein model (LP) to benchmark those inverse statistical approaches. We build MSA of highly stable sequences in target LP structures, and infer the effective pairwise Potts Hamiltonians from those MSA. We find that inferred Potts Hamiltonians reproduce many important aspects of 'true' LP structures and energetics. Careful analysis reveals that effective pairwise couplings in inferred Potts Hamiltonians depend not only on the energetics of the native structure but also on competing folds; in particular, the coupling values reflect both positive design (stabilization of native conformation) and negative design (destabilization of competing folds). In addition to providing detailed structural information, the inferred Potts models used as protein Hamiltonian for design of new sequences are able to generate with high probability completely new sequences with the desired folds, which is not possible using independent-site models. Those are remarkable results as the effective LP Hamiltonians used to generate MSA are not simple pairwise models due to the competition between the folds. Our findings elucidate the reasons for the success of inverse approaches to the modelling of proteins from sequence data, and their limitations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Fundamental Symmetries of Integrable Systems and Partial Bethe Ansatz

We introduce a new concept of quasi-Yang-Baxter algebras. The quantum quasiYang-Baxrer algebras being simple but non-trivial deformations of ordinary algebras of monodromy matrices realize a new type of quantum dynamical symmetries and nd an unexpected and remarkable applications in quantum inverse scattering method (QISM). We show that applying to quasi-Yang-Baxter algebras the standard proced...

متن کامل

40 50 47 v 1 1 7 M ay 2 00 4 On the exactly - solvable pairing models for bosons

On the exactly-solvable pairing models for bosons. Abstract We discuss the construction of the exactly solvable pairing models for bosons in the framework of the Quantum Inverse Scattering method. It is stressed that this class of models is naturally appears in the quasiclassical limit of the algebraic Bethe ansatz transfer matrix. It is pointed out that the new class of the pairing models can ...

متن کامل

Generalized Fuzzy Inverse Data envelopment Analysis Models

Traditional DEA models do not deal with imprecise data and assume that the data for all inputs and outputs are known exactly. Inverse DEA models can be used to estimate inputs for a DMU when some or all outputs and efficiency level of this DMU are increased or preserved. this paper studies the inverse DEA for fuzzy data. This paper proposes generalized inverse DEA in fuzzy data envelopment anal...

متن کامل

Analysis of Natural Frequencies for a Laminated Composite Plate with Piezoelectric Patches using the First and Second Eigenvalue Derivatives

In this paper, the first and second order approximations of Taylor expansion are used for calculating the change of each natural frequency by modifying an arbitrary parameter of a system with a known amount and based on this approximation, the inverse eigenvalue problem is transformed to a solvable algebraic equation. The finite element formulation, based on the classical laminated plate theory...

متن کامل

ep - t h / 97 08 05 8 v 1 1 1 A ug 1 99 7 Bethe Ansatz in Quantum Mechanics . 1 . The Inverse Method of Separation of Variables

In this paper we formulate a general method for building completely integrable quantum systems. The method is based on the use of the so-called multi-parameter spectral equations, i.e. equations with several spectral parameters. We show that any such equation, after eliminating some spectral parameters by means of the so-called inverse procedure of separation of variables can be reduced to a ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016